Journal of Organometallic Chemistry, 160 (1978) 255–262 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBER DIE KRISTALL- UND MOLEKÜLSTRUKTUR VON 1,3-CYCLOHEXADIEN-DICARBONYL-ETHYLISONITRIL-EISEN(0) *

HELMUT BEHRENS *, GERHARD THIELE, ALBERT PÜRZER, PETER WÜRSTL und MATTHIAS MOLL

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, 8520 Erlangen (B.R.D.) (Eingegangen den 31. Mai 1978)

Summary

The X-ray structure of the monoclinic $C_6H_8Fe(CO)_2CNEt$ (space group $P2_1/c$) has been determined. The iron atom is pentacoordinated by a square pyramide in which the isonitrile ligand CNEt, the CO group and two C atoms of the diene part of the C_6H_8 -ring occupy the basal positions. The vibrational and ¹³C NMR spectra indicate fluctional behaviour of this molecule in solution. The hydride abstraction from $C_6H_8Fe(CO)_2CNR$ (R = Me, Et) leads to the cation $[C_6H_7Fe (CO)_2CNR]^+$.

Zusammenfassung

Die Röntgenstrukturanalyse des monoklin in der Raumgruppe $P2_1/c$ kristallisierenden $C_6H_8Fe(CO)_2CNEt$ zeigt, dass das Eisenatom in Form einer quadratischen Pyramide 5-fach koordiniert ist. Dabei besetzen der Isonitril-Ligand CNEt, eine CO-Gruppe und 2 C-Atome des Dienteiles des C_6H_8 -Ringes die basalen Positionen. Die Schwingungs- und ¹³C-NMR-Spektren weisen darauf hin, dass das Molekül in Lösung eine fluktuierende Struktur besitzt. Durch Hydrid-Abspaltung aus $C_6H_8Fe(CO)_2CNR$ (R = Me, Et) entsteht das Kation $[C_6H_7Fe(CO)_2-CNR]^+$.

Einleitung

In früheren Arbeiten haben wir darüber berichtet, dass sich Olefin-eisentricarbonyle (olen)Fe(CO)₃ (olen = Butadien, 1,3-Cyclohexadien, Cyclooctatetraen) mit Natrium-bis[trimethylsilyl]-amid im Sinne der von Wannagat und Seyffert [1] beschriebenen Reaktionsweise zu den betreffenden Natrium-olefin-mono-

^{*} Herm Professor Ernst Otto Fischer zu seinem 60. Geburtstag am 10. November 1978 gewidmet.

cyano-dicarbonyl-ferraten Na[(olen)Fe(CO)₂CN] umsetzen [2]. Diese Anionen lassen sich durch Trialkyloxonium-Salze zu den neutralen Isonitril-Komplexen (olen)Fe(CO)₂CNR (R = Me, Et) alkylieren [3], deren IR- und ¹H-NMR-Spektren bereits publiziert wurden [3]. Im Rahmen dieser Untersuchungen konnte speziell auch das 1,3-Cyclohexadien-dicarbonyl-ethylisonitrileisen(0) C_6H_8 Fe-(CO)₂CNEt dargestellt werden, für das ebenso, wie für die übrigen (olen)Fe-(CO)₂CNR-Komplexe, zwei Isomere mit apikal bzw. basal stehendem Isonitril-Liganden diskutiert wurden [3].

Nachdem uns nunmehr die Züchtung von Einkristallen des Cyclohexadien-Komplexes $C_6H_8Fe(CO)_2CNEt$ gelang, wurde eine Röntgenstrukturanalyse von dieser Verbindung durchgeführt, zumal unseres Wissens bisher Strukturen des Typs (olen)Fe(CO)_2L unbekannt sind.

1. Kristallstruktur von C₆H₈Fe(CO)₂CNEt

Die Kristalle der Verbindung werden durch eine innenzentrierte Packung von isolierten 1,3-Cyclohexadien-dicarbonyl-ethylisonitril-eisen(0)-Molekülen aufgebaut.

Ein Vergleich der metrischen Verhältnisse (Kristalldaten siehe Tab. 1) zeigt eine starke Stauchung der idealisierten kubischen Zellen $(a_c = \frac{1}{2}(a + b); b_c = \frac{1}{2}(a - b); c_c = c)$ in c-Richtung. Hierdurch wird die Zahl der Nachbarmoleküle innerhalb der Packung von acht auf zehn erhöht und eine wesentliche Verbesserung der Raumerfüllung erreicht.

Die wichtigsten intramolekularen Abstände und die Konformation der Moleküle sind den Fig. 1 bzw. 2 und Tab. 2 zu entnehmen.

Das Eisenatom ist in Form einer quadratischen Pyramide 5-fach koordiniert, wobei erwartungsgemäss zwei der Koordinationsstellen in der Basis der Pyramide vom Dienteil des Ringsystems belegt werden. Da die Isonitrilgruppe nicht die ausgezeichnete axiale Position besetzt (lokale Symmetrie am Eisen für diese Konformation wäre C_s) sind im Molekül keine Symmetrieelemente enthalten. Durch das Symmetriezentrum im Ursprung der Zelle wird das chirale Molekül der asymmetrischen Einheit in das Enantiomere überführt.

Ein Vergleich der Bindungslängen in den Diensystemen von $C_6H_8Fe(CO)_2$ -

KRISTALLDATEN VON C ₆ H ₈ Fe(CO) ₂ CNEt						
Raumgruppe	$P2_1/c - C_{2h}^5$ (Nr. 14 der Int. Tab.)					
Zellkonstanten:						
а	1491.6(8) pm					
ь	949.3(3) pm					
с	776.6(2) pm					
ß	91.78(9) [°]					
Zellvolumen	1099.1 X 10 ⁶ pm ³					
Dichte: exp. a	$1.40 \mathrm{g} \mathrm{cm}^{-3}$					
ber.	1.49 g cm ⁻³ für $Z = 4$					

TABELLE 1

^a Pyknometrisch mit Wasser.

Fig. 1. ORTEP-Zeichnung von $C_6H_8Fe(CO)_2CNEt$ (s. auch Fig. 2).

Fig. 2. ORTEP-Zeichnung von $C_6H_8Fe(CO)_2CNEt$. In Fig. 1 und 2 sind die thermischen Ellipsoide entsprechend 30prozentiger Wahrscheinlichkeit mit Hilfe des ORTEP-Programmes [14] gezeichnet.

AUSGEWAHLTE BINDUNGSWINKEL (~) "									
CR2CR1CR6 CR1CR2CR3 CR2CR3CR4 CR3CR4CR5 CR4CR5CR6	127(2) 104(1.5) 124(2) 118(2) 110(2)	CR1-Fe-C1 CR1-Fe-C2 CR1-Fe-C3 CR2-Fe-C1 CR2-Fe-C2	94.0(8) 92.7(9) 159.0(8) 133.9(8) 90.8(9)	C1-Fe-C2 C1-Fe-C3 C2-Fe-C3 Fe-C1-O1 Fe-C2-O2	99.8(9) 104.2(9) 94.3(10) 175(2) 170(2)				
CR1-CR6-CR5 CR2-Fe-CR1 CR3-Fe-CR1 CR3-Fe-CR2 CR4-Fe-CR1 CR4-Fe-CR2 CR4-Fe-CR2 CR4-Fe-CR3	109(2) 40.6(7) 68.4(7) 41.1(7) 76.9(8) 73.1(7) 39.7(7)	CR2-Fe-C3 CR3-Fe-C1 CR3-Fe-C2 CR3-Fe-C3 CR4-Fe-C1 CR4-Fe-C2 CR4-Fe-C3	119.5(8) 131.6(8) 124.7(9) 91.5(9) 93.6(8) 163.6(9) 91.5(9)	Fe-C3-N C3-N-C4 N-C4-C5	172(2) 162(2) 105(1.5)				

ALISCEWÄHLTE BINDI	INGSWINKEL (°)	4

^a Standardabweichungen in Einheiten der letzten Dezimale.

CNEt, $C_4H_6Fe(CO)_3$ [4], $(C_6H_8)_2FeCO$ [5] und $C_8H_8Fe(CO)_3$ [6] zeigt nur sehr geringe Unterschiede (Tab. 3).

Während die Abstände CR1–CR2 und CR3–CR4 in den Tricarbonylkomplexen und im $(C_6H_8)_2$ FeCO jeweils gleich lang sind $(C_s$ -Symmetrie), sind sie beim C_6H_8 Fe(CO)₂CNEt verschieden. Diese Verzerrung des Ringes wird vermutlich durch die basale Anordnung des Isonitril-Liganden hervorgerufen.

Dies hat weiterhin zur Folge, dass die 3 Atomabstände Fe—CR1, Fe—CR2 und Fe—CR4 nahezu gleich sind, während der Fe—CR3-Abstand auffallend kürzer ist. Auch der Bindungswinkel \lt CR1—CR2—CR3 im Diensystem (Tab. 2) weicht mit 104° erheblich vom Idealwert für *sp*²-hybridisierten Kohlenstoff ab.

TABELLE 3

VERGLEICH AUSGEWÄHLTER BINDUNGSABSTÄNDE IN C₆H₈Fe(CO)₂CNEt, C₄H₆Fe(CO)₃, (C₆H₈)₂FeCO und C₈H₈Fe(CO)₃ (pm)

Bindung	C ₆ H ₈ Fe(CO) ₂ CNEt	C ₄ H ₆ Fe(CO) ₃ [4]	(C ₆ H ₈) ₂ F	eCO [5]	C ₈ H ₈ Fe(CO) ₃ [6]
	CR4 CR4 CR2 CR2 CR2 CR2 CR2 CR2 CR1 CR2	CR4 CR1 CR3 CR2 Fe-	CR4 CR3 CR2 Fe		CR4 CR3 CR2 V Fe –
 CR1CR2	148	146	138	140	142
CR2-CR3	147	145	143	141	142
CR3-CR4	141	146	139	140	142
CR4CR5	151		151	152	
CR5-CR6	160		153	151	
CR6-CR1	156		151	152	
Fe—CR1	212	214	213	212	218
Fe—CR2	215	206	204	204	205
FeCR3	202	206	204	203	205
Fe-CR4	213	214	212	212	218

TABELLE 2

TABELLE 4

со	CN	C2, C3	C1, C4	C5, C6	-CH2-	CH3	T (°C)	Solvens
217.2	164.6	85.1 (169)	58.9 (154)	24.6 (130)	38.9 (144)	15.2 (127)	25	C ₆ D ₆
212.5 (br)	158.4	83.5 (br)	57.1 (br)	22.5	37.8	13.8	79	$CD_2Cl_2/$ $(CD_3)_2CO$

 $^{13}\text{C-NMR-DATEN}$ VON C₆H₈Fe(CO)₂CNEt (chemische Verschiebung in ppm, int. TMS; in Klammern $^{13}\text{C}^{-1}\text{H-Kopplungskonstanten}$, in Hz)

Beim $C_6H_8Fe(CO)_2CNEt$ liegen die C-Atome CR1 bis CR4 des Dien-Teiles exakt in einer Ebene (maximale Abweichung 0.05 pm), die mit der Ebene der übrigen C-Atome des Ringes, CR1, CR4 bis CR6, einen Winkel von 141° einschliesst (Fig. 1). Ein Vergleich des entsprechenden Winkels bei ringsubstituierten Cyclohexadien-tricarbonyl-Komplexen zeigt gute Übereinstimmung [7,8].

Bei Isonitril-Komplexen sollte aufgrund bindungstheoretischer Überlegungen generell eine lineare C-N-R-Anordnung zu erwarten sein. Während der Winkel Fe-C-NEt mit 172(2)° nur wenig vom Idealwert abweicht, zeigt der Winkel C3-N-C4 eine stärkere Deformation (162(2)°). Diese erhebliche Abweichung dürfte durch Packungseffekte hervorgerufen werden.

2. Zur Struktur von C₆H₈Fe(CO)₂CNEt in Lösung

Von den beiden Komplexen $C_6H_8Fe(CO)_3$ bzw. $C_6H_8Fe(CO)_{3-x}(PF_3)_x$ (x = 1-3) ist bekannt, dass sie in Lösung ein fluktuierendes Verhalten zeigen, das formal einer Rotation des Polyen-Fragments relativ zur $Fe(CO)_3$ - bzw. $Fe(CO)_{3-x}$ - $(PF_3)_x$ -Gruppierung entspricht [9,10]. Auch für das $C_6H_8Fe(CO)_2CNEt$ wurde bereits aufgrund der lösungsmittel- und temperaturabhängigen IR-Spektren im $\nu(CO)$ -Bereich angenommen, dass in unpolaren Solvenzien zwei Isomere nebeneinander vorliegen *. So treten nämlich in den n-Hexan-Lösungsspektren mehr Banden auf, als gruppentheoretisch (lokale C_s -Symmetrie) zu erwarten sind $(\nu(CN): 2145m, 2120s(Sch); \nu(CO): 1993st, 1980s(Sch), 1947st cm^{-1})$. Wie im IR-Spektrum von $C_6H_8Fe(CO)_2CNEt$ in CH_2Cl_2 [3] beobachtet man auch im Ramanspektrum nur eine $\nu(CN)$ - und zwei $\nu(CO)$ -Banden (2149sst, 1980m, 1924m cm^{-1}), wobei aber die Messung des Polarisationsverhaltens dieser Schwingungen wegen der lokalen C_s -Symmetrie des $Fe(CO)_2CNEt$ -Fragments keine Aussage über die in polaren Solvenzien bevorzugte Konformation liefert.

Die ¹³C-NMR-Spektren bei verschiedenen Temperaturen zeigen zwar, dass es sich um ein fluktuierendes System handelt, was speziell aus der Linienverbreiterung des ¹³CO-Signals und der Signale der Dien-Kohlenstoffatome bei tiefer Temperatur hervorgeht, lassen jedoch nicht erkennen, welches Rotationsisomere hierbei bevorzugt ist (Tab. 4).

3. Hydrid-Abspaltung aus $C_6H_8Fe(CO)_2CNR$ (R = Me, Et)

In Analogie zur Hydrid-Abspaltung aus $C_6H_8Fe(CO)_3$ mit $[CPh_3]BF_4$, die zur Bildung des Cyclohexadienyl-eisentricarbonyl-Kations $[C_6H_7Fe(CO)_3]^*$ führt

^{*} Siehe auch die jeweiligen Fig. 1 und Lit. [2,3].

Fig. 3. Wichtigste Fragmentionen im Massenspektrum von C₆H₈Fe(CO)₂CNEt.

[11], lassen sich auch die von uns synthetisierten Isonitril-Derivate $C_6H_8Fe(CO)_2$ -CNR (R = Me, Et) in die entsprechenden $[C_6H_7Fe(CO)_2CNR]^+$ -Kationen überführen (Gl. 1).

$$C_{6}H_{8}Fe(CO)_{2}CNR + [CPh_{3}]BF_{4} \xrightarrow{CH_{2}Cl_{2}} [C_{6}H_{7}Fe(CO)_{2}CNR]BF_{4} + HCPh_{3}$$
(1)
(R = Me, Et)

Dieses Ergebnis steht in guter Übereinstimmung mit den Massenspektren von $C_6H_8Fe(CO)_2CNEt$, aus denen ebenfalls die grosse Stabilität der Eisen-Isonitril-Bindung hervorgeht (Fig. 3).

Die Komplexe $[C_6H_7Fe(CO)_2CNR]BF_4$ lassen sich analytisch, IR- sowie NMRspektroskopisch (¹H, ¹³C) eindeutig charakterisieren, worüber in Kürze an anderer Stelle berichtet wird [12].

4. Experimentelles

Einkristalle von 1,3-Cyclohexadien-dicarbonyl-ethylisonitril-eisen(0) lassen sich durch Umkristallisation von polykristallinen Proben erhalten, die durch Ethylierung von Na[C₆H₈Fe(CO)₂CN] dargestellt wurden [3]. Dazu wird eine 0.01 *M* Lösung von C₆H₈Fe(CO)₂CNEt in n-Hexan auf -30° C gekühlt und die nach melureren Tagen gebildeten nadelförmigen, gelben Kristalle in einer Kühlfritte bei der gleichen Temperatur abgesaugt. Analyse: Gef.: C, 53.46; H, 4.60; Fe, 22.88; N, 5.35. C₁₁H₁₃FeNO₂ ber.: C, 53.47; H, 5.30; Fe, 22.60; N, 5.67%. Massenspektrum *: Ausser dem Molekülion (*m/e* = 247) sind in Fig. 3 die wichtigsten Fragmentionen angegeben, wobei nahezu alle Fragmentierungsschritte durch metastabile Übergänge belegt werden können.

^{*} Für die Aufnahme der Massenspektren danken wir den Herren Dr. P. Merbach und E. Sepp.

Zur Röntgenstrukturanalyse wurde eine Kristallnadel mit den Abmessungen $0.35 \times 0.15 \times 0.12 \text{ mm}^3$ bei -50(2)°C am Einkristalldiffraktometer PW 1100 vermessen. Die Intensitätsmessung im ω -Scan lieferte im Bereich bis $\theta_{\max} = 20^{\circ}$ unter Verwendung von Mo- K_{α} -Strahlung in der halben Reflexionskugel 1696 Reflexe. Eine trotz der Kühlung nicht zu vermeidende langsame Zersetzung des Kristalles während der Messung konnte über die Angleichung der Intensitäten von drei Testreflexen korrigiert werden. Zur Strukturbestimmung unter Verwendung von Fouriermethoden verblieb nach den üblichen Korrekturen und der Mittelung über symmetrieäquivalente Reflexe ein Satz von 861 unabhängigen Daten, davon 573 $I_0 > 2 \sigma$. Die isotrope Verfeinerung der Parameter der 15 Schweratome führte zu einem R-Wert von 0.149 ($R = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$). Nach der Einführung der anisotropen Temperaturfaktoren wurde R = 0.089 erreicht, wobei die 136 Parameter in zwei Blöcken verfeinert werden mussten. Die Parameter sind Tab. 5 zu entnehmen.

ATOMIA		ANISOINOLEII	SMIERAIOR	FARTOREN		
Atom	x/a	y/b	z/c			
Fe	0.2422(2)	0.4946(4)	0.3004(4)			
01	0.207(1)	0.502(2)	-0.06	8(2)		
02	0.379(1)	0.714(2)	0.37	1(2)		
N	0.370(1)	0.255(2)	0.32	5(2)		
C1	0.223(1)	0.505(2)	0.07	5(2)		
C2	0.326(2)	0.628(2)	0.32	7(3)		
C3	0.321(2)	0.349(2)	0.32	ə(2)		
C4	0.430(1)	0.129(2)	0.38	0(2)		
C5	0.430(1)	0.035(2)	0.22	6(2)		
CR1	0.138(2)	0.636(2)	0.35	5(2)		
CR2	0.173(2)	0.574(2)	0.519	9(2)		
CR3	0.166(1)	0.421(2)	0.491(2)			
CR4	0.131(2)	0.359(2)	0.338(2)			
CR5	0.046(2)	0.420(2)	0.257(3)			
CR6	0.052(2)	0.588(2)	0.251(3)			
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe	0.027(1)	0.021(1)	0.045(2)	0.004(2)	0.003(1)	-0.003(2)
01	0.080(3)	0.055(3)	0.045(3)	-0.004(3)	0.005(3)	0.005(3)
02	0.052(3)	0.052(3)	0.090(3)	-0.003(3)	0.010(3)	-0.016(3)
N	0.041(3)	0.051(3)	0.063(3)	-0.012(3)	0.014(3)	0.005(3)
C1	0.018(3)	0.028(3)	0.028(3)	0.002(3)	0.002(3)	0.008(3)
C2	0.048(3)	0.045(3)	0.058(3)	-0.005(3)	0.004(3)	0.004(3)
C3	0.032(3)	0.031(3)	0.040(3)	0.011(3)	0.010(3)	0.014(3)
C4	0.027(3)	0.031(3)	0.040(3)	0.005(3)	0.002(3)	0.010(3)
C5	0.055(3)	0.044(3)	0.044(3)	0.001(3)	0.002(3)	0.005(3)
CR1	0.029(3)	0.028(3)	0.037(3)	-0.015(3)	0.016(3)	0.001(3)
CR2	0.038(3)	0.023(3)	0.053(3)	-0.004(3)	0.015(3)	0.017(3)
CR3	0.032(3)	0.018(3)	0.038(3)	0.007(3)	0.007(3)	-0.002(3)
CR4	0.031(3)	0.037(3)	0.043(3)	0.008(3)	0.012(3)	-0.016(3)
CR5	0.045(3)	0.033(3)	0.058(3)	0.001(3)	0.005(3)	0.001(3)
CR6	0.036(3)	0.035(3)	0.059(3)	0.007(3)	0.007(3)	0.001(3)

ATOMPARAMETER UND ANISOTROPE TEMPERATURFAKTOREN ^{a, b}

TABELLE 5

^a Die anisotropen Temperaturfaktoren sind definiert als $B = \exp[-2\pi^2/\lambda^2(a^{*2}U_{11}h^2 + ... + 2a^{*}b^{*}U_{12}hk + ...)].$ ^b Standardabweichungen in Einheiten der letzten Dezimale.

Auf Grund der mässigen Qualität des Datensatzes (hoher Streuuntergrund als Folge der Zersetzung) wurde auf eine Berücksichtigung der H-Atome verzichtet. Alle Berechnungen wurden mit dem Programmsystem SHELX 76 [13] auf der Rechenanlage Cyber 172 des Regionalen Rechenzentrums Erlangen durchgeführt.

Dank

Der Deutschen Forschungsgemeinschaft und dem Verband der chemischen Industrie e.V., Fonds der Chemischen Industrie, danken wir für die Unterstützung mit Sachmitteln, den Mitarbeitern des Regionalen Rechenzentrums Erlangen für die Unterstützung bei den Berechnungen.

Literatur

- 1 U. Wannagat und H. Seyffert, Angew. Chem., 77 (1965) 457.
- 2 H. Behrens und M. Moll, Z. Anorg. Allg. Chem., 416 (1975) 193.
- 3 H. Behrens, M. Moll und P. Würstl, Z. Naturforsch. B, 31 (1976) 1917.
- 4 O.S. Mills und G. Robinson, Acta Cryst., 16 (1963) 758.
- 5 C. Krüger und Y.-H. Tsay, Angew. Chem., 83 (1971) 250.
- 6 B. Dickens und W.N. Lipscomb, J. Chem. Phys., 37 (1962) 2084.
- 7 F.A. Cotton und J.M. Troup, J. Organometal. Chem., 77 (1974) 369.
- 8 B.F.G. Johnson, J. Lewis, D.G. Parker, P.R. Raithby und G.M. Sheldrick, J. Organometal. Chem., 150 (1978) 115.
- 9 L. Kruczynski und J. Takats, Inorg. Chem., 15 (1976) 3140.
- 10 J.D. Warren, M.A. Busch und R.J. Clark, Inorg. Chem., 11 (1972) 452.
- 11 E.O. Fischer und R.D. Fischer, Angew. Chem., 72 (1960) 919.
- 12 P. Würstl, Dissertation Universität Erlangen-Nürnberg (1978).
- 13 Programmsystem SHELX 76 zur Röntgenstrukturanalyse; Autor: G. Sheldrick, Cambridge. Version Cyber 172 von G. Zoubek, Erlangen.
- 14 C.K. Johnson, Oak Ridge National Laboratory, Report 3794, Oak Ridge Tennessee 1965, Upd. 1971; TR 440 - Version: W. Kehr, Universität Erlangen 1976.